Multifacility Minimax Location Problems via Multi-Composed Optimization
نویسندگان
چکیده
We present a conjugate duality approach for multifacility minimax location problems with geometric constraints, where the underlying space is Fréchet and the distances are measured by gauges of closed convex sets. Besides assigning corresponding conjugate dual problems, we derive necessary and sufficient optimality conditions. Moreover, we introduce a further dual problem with less dual variables than the first formulated dual and deliver corresponding statements of strong duality and optimality conditions. To illustrate the results of the latter duality approach and to give a more detailed characterization of the relation between the location problem and its dual, we consider the situation in the Euclidean space.
منابع مشابه
Minmax regret solutions for minimax optimization problems with uncertainty
We propose a general approach for nding minmax regret solutions for a class of combinatorial optimization problems with an objective function of minimax type and uncertain objective function coe cients. The approach is based on reducing a problem with uncertainty to a number of problems without uncertainty. The method is illustrated on bottleneck combinatorial optimization problems, minimax mul...
متن کاملSufficiency and Duality in Minimax Fractional Programming with Generalized (φ, Ρ)-invexity
Amongst various important applications, one important application of nonlinear programming is to maximize or minimize the ratio of two functions, commonly called fractional programming. The characteristics of fractional programming problems have been investigated widely [1, 6, 10] and [13]. In noneconomic situations, fractional programming problems arisen in information theory, stochastic progr...
متن کاملA Shortest Path Approach to a Multifacility Minimax Location Problem with Rectilinear Distances
The multifacility minimax location problem with rectilinear distances is considered. It is reduced to a parametric shortest path problem in a network with no negative length arcs. The reduction scheme contributes to this location problem and yields an efficient algorithm with time complexity 0 (n max(m log m, n3 )) where n and m denote the numbers of the new and existing facilitie,s in the plan...
متن کاملGlobal Optimization Procedures for the Capacitated Euclidean and lp Distance Multifacility Location-Allocation Problems
7.
متن کاملRobustness in portfolio optimization based on minimax regret approach
Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016